1 WET CHEM DATA ANALYSIS SHEET

∟ab Name: STL

· Contract:

Lab Code: STL

Case No.:

SAS No.:

SDG No.: A2791

Client Sample ID: VC10.0A

Matrix: Soil

Lab Sample ID: 012791A-18D1

Analyte	Concentration	С	Units
TOC 1	11,400	 -	mg/Kg
TOC 2	11,100	1	mg/Kg
TOC 3	7,050	Г	mg/Kg

WET CHEM DATA ANALYSIS SHEET

Lab Name: STL

· Contract:

Lab Code: STL

Case No.:

SAS No.:

SDG No.: A2791

Client Sample ID: VC10.0A Lab Sample ID: 012791A-18D2

Matrix: Soil

Analyte	Concentration	С	Units
TOC 1	11,100		mg/Kg
TOC 2	11,400		mg/Kg
TOC 3	7,210		mg/Kg

SAMPLE NO.

VC10.I	
--------	--

ab Name: STL	Contract:
ab Code: STL Case No.: 2791A	SAS No.: SDG No.: <u>A2791</u>
latrix (soil/water): <u>SOIL</u>	Lab Sample ID: <u>012791A-19</u>
Solids: <u>60.2</u>	Date Received: <u>11/16/01</u>

CAS No.	Analyte	Concentration	С	Units	Q	М
·	Percent Moisture	39.8				G
	TOC	9320		mg/Kg		D
	TOC	8930		mg/Kg		D
· · ·	TOC	9050		mg/Kg		D
	1					Г
						F
						Г
						Г
					,	Г
 						1
						✝
			-		,	Τ
		· · · · · · · · · · · · · · · · · · ·				Г
						T
					i	1
			_			t
			-			✝
· , - · · · · · · · · · · · · · · · · · ·	 					T
· · · · · · · · · · · · · · · · · · ·	<u> </u>		-		_	✝
			 			十
· · · · · · · · · · · · · · · · · · ·			 		 	+-
			<u> </u>		-	十
						╂─
					 	╁╌
•					!	4

Comments:	·			,	· ·
					
	<u>.</u>			<u></u> .	
	·	·			

FORM I - WC

SAMPLE NO.

	vc.to.c
ab Name: STL	Contract:
ab Code: STL Case No.: 2791A	SAS No.: SDG No.: <u>A2791</u>
atrix (soil/water): <u>SOIL</u>	Lab Sample ID: <u>012791A-20</u>
Solids: <u>54.1</u>	Date Received: <u>11/16/01</u>

CAS No.	Analyte	Concentration	C	Units	Q	М
 	Percent Moisture	45.9				G
•	TOC	12100	-	∙ mg/Kg		D
	TOC	11800		mg/Kg		I
	TOC	12200		mg/Kg		Γ
				•		
						<u>.</u>
••						
· · · · · · · · · · · · · · · · · · ·						
						<u> </u>
					٠,٠	<u></u>
	· ·					Ŀ
						<u> </u>
						L
, , ,						Ŀ
						L
		J				1_
			-			L
						L
· 						1_
						L

ments:		•					
	•	 	 				
				·		<u> </u>	
					_		
		 · ·					

STL Connecticut

ORGANICS APPENDIX

- U-Indicates that the compound was analyzed for but not detected.
- J-Indicates that the compound was analyzed for and determined to be present in the sample. The mass spectrum of the compound meets the identification criteria of the method. The concentration listed is an estimated value, which is less than the specified minimum detection limit but is greater than zero.
- B This flag is used when the analyte is found in the blanks as well as the sample. It indicates possible sample contamination and warns the data user to use caution when applying the results of this analyte.
- N Indicates that the compound was analyzed for but not requested as an analyte. Value will not be listed on tabular result sheet.
- S Estimated due to surrogate outliers.
- X Matrix spike compound.
- (1) Cannot be separated
- (2) Decomposes to azobenzene. Measured and calibrated as azobenzene.
- A This flag indicates that a TIC is a suspected aldol condensation product.
- E Indicates that it exceeds calibration curve range.
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor.
- C Confirmed by GC/MS.
- T Compound present in TCLP blank.
- P This flag is used for a pesticide/aroclor target analyte when there is a greater than 25 percent difference for detected concentrations between the two GC columns (see Form X).

INORGANICS APPENDIX

C - Concentration qualifiers

- U-Indicates analyte was not detected at method reporting limit.
- B- Indicates analyte result between IDL and contract required detection limit (CRDL)

Q - QC qualifiers

- E-Reported value is estimated because of the presence of interference
- M Duplicate injection precision not met .
- N Spiked sample recovery not within control limits
- S The reported value was determined by the method of standard additions (MSA)
- W Post-digest spike recovery furnace analysis was out of 85-115 percent control limit, while sample absorbance was less than 50 percent of spike absorbance
- * Duplicate analysis not within control limit
- + Correlation coefficient for MSA is less than 0.995

M - Method codes

- P-ICP
- A Flame AA
- F Furnace AA
- CV Cold vapor AA (manual)
- C Cyanide
- NR Not required
- NC Not calculated as per protocols

December 14, 2001

STL Connecticut
128 Long Hill Cross Road
Shelton, CT 06484

Tel: 203 929 8140 Fax: 203 929 8142 www.stl-inc.com

Ms. Megan Brown TRC ENVIRONMENTAL 5 Waterside Crossing Windsor, CT 06095

Dear Ms. Brown:

Please find enclosed the analytical results of 24 sample(s) received at our laboratory on November 16-20, 2001. This report contains sections addressing the following information at a minimum:

sample summary

definition of data qualifiers and terminology

. analytical methodology

analytical results

state certifications . chain-of-custody

STL Report #7001-2791B	Purchase Order #38077
Project ID: ISLANDER EAST	*

Copies of this analytical report and supporting data are maintained in our files for a minimum of five years unless special arrangements have been made. Unless specifically indicated, all analytical testing was performed at this laboratory location and no portion of the testing was subcontracted.

We appreciate your selection of our services and welcome any questions or suggestions you may have relative to this report. Please contact your customer service representative at (203) 929-8140 for any additional information. Thank you for utilizing our services; we hope you will consider us for your future analytical needs.

I have reviewed and approved the enclosed data for final release.

Jeffrey C. Curran Laboratory Manager

JCC

This report contains 36 pages.

7001-2791B TRC ENVIRONMENTAL

Case Narrative

Sample Receipt -The samples were received at 8°C. The client was notified, and the laboratory was instructed to proceed with the analyses.

The following analyses were subcontracted out to the indicated laboratories:

Specific Gravity sent to STL - VT, 55 South Park Dr., Colchester, VT 05446.

8021 BTEX sent to STL - North Canton (OH), 4101 Shuffel Dr. NW, North Canton, OH 44720.

Metals – ICAP metals were determined using a JA61E trace ICAP; mercury was determined by cold vapor technique using a Leeman Labs mercury analyzer; following guidance provided in SW846 according to methods: ICAP – 3010A, 3050B/6010B; mercury-7470A, 7471A.

No problems occurred during analysis. All appropriate protocols were employed. All data appears to be consistent.

Semi-Volatile Organics - Semi-volatile organic samples were extracted and analyzed by capillary GC/MS according to NYSDEC '95 Protocols using guidance provided in Methods 3510C/3550C/8270C. The instrumentation used was a Hewlett-Packard Gas Chromatograph interfaced with a Mass Selective Detector.

The following samples exhibited internal standard area suppression. The samples were re-analyzed with similar results confirming matrix interference. Only the original analyses are reported.

VC10.G		VC10.H
	VC10.MB	VC10.L
VC10.K	VC15.B	VC10.J

Sample VC10.D exhibited internal standard area suppression and matrix interference was confirmed my similar results for the matrix spike samples VC10.DMS and VC10.DMSD.

The spike recovery for the compound pyrene, was above recovery limits for SBLKN1FMS.

The spike recovery for the compounds pyrene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene and benzo(g,h,i)perylene, were above recovery limits for SBLKWPFMS. The recovery for the all compounds were above recovery for VC10.WMS and most were above recovery limits for the MSB and MSD.

Surrogate recoveries were above the limits for pyrene-d10 on eleven samples and fluorene-d10 was below the limits on five samples.

The laboratory does not have enough data to establish control limits for the low concentration soils based on historical data. The limits presented here are based on method TO13A.

Sample Calculation:

Sample ID – VC10.S Compound - acenaphthylene

$$\frac{(44603)(1)(1000)(1.0)}{(62742)(1.671)(2)(30.7)(.61)} = 11.35 = 11 \text{ ug/kg}$$

Classical Chemistry - The samples in this SDG were analyzed for percent solids and total organic carbon according to Test Methods for the Evaluation of Solid Wastes, SW846, 3rd ed., 1986. Percent moisture results were obtained by calculation. Samples were analyzed in triplicate for total organic carbon by method 9060. No analytical problems were encountered.

Polychlorinated Biphenyls (PCB's) - PCB samples were extracted and analyzed by GC/ECD using guidance provided in Methods 3510C/3550B/8082. The instrumentation used was a Hewlett-Packard Gas Chromatograph equipped with an Electron Capture Detector (Ni63).

All soil samples were acid and sulfur cleaned up prior to analysis.

All soil samples really could have used more sulfur cleanup, but due to limited extract volume this was not possible.

Samples were brought to a 2ml final volume in order to meet client required detection limits.

The amount spiked was not adjusted for the lower final volume for the QC checks and MS/MSD's.

The surrogate, tetrachlorometaxylene, was outside of retention time windows on the RTX-35 column in samples PBLK83, VC10.L, VC10.K, VC15.B, VC10.J, VC10.D, VC10.F, VC10.H, VC10.H, VC10.G, VC10.DMSB1, and VC10.DMS1. This shift was taken into consideration when samples were reviewed for target compounds.

The surrogate, tetrachlorometaxylene, was outside of retention time windows on the RTX-35 column in the AR16603 and PIBLK continuing calibration checks analyzed on 12/7/01 at 12:42, 13:22, 23:25; and 12/8/01 at 00:46. These were bracketing standards for

PBLK83, VC10.L, VC10.K, VC15.B, VC10.J, VC10.D, VC10.F, VC10.H, VC10.H, VC10.G, and VC10.DMS1.

This shift was taken into consideration when samples were reviewed for target compounds.

The %RPD of Aroclor 1260 for samples VC10.DMS/MSD was over QC criteria.

The Aroclor 1260 spike present in sample VC10.DMSB was outside of retention time windows on the RTX-35 column. This shift was taken into consideration when the sample was reviewed for target compounds.

Manual integrations were performed if required, and any affected peaks were designated with an "MM" on the area report in the column titled "Code". Manual integrations were initialed by the analyst that performed the integration.

Sample Calculation:
Sample ID -VC10.DMSB1
Compound - Aroclor 1260 peak at retention time 22.23 on the RTX-35 column.
(500433area)(2000ul) = 95ug/kg
(351115area/ng)(30g)(1ul)

TABLE SV-1.0 7001-2791B TRC ENVIRONMENTAL PAH'S

All values are ug/L.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	Method Blank SBLKN1 SBLKN1 1.00	EB111701 012791B-08 SBLKN1 1.00		Quant. Limits with no Dilution
Naphthalene 2-Methylnaphthalene Acenaphthylene	. u u	1J .4J U		10 10 10
Acenaphthène Fluorene Phenanthrene Anthracene	U U U	U U U		10 10 10 10
Fluoranthene Pyrene Benzo(a) anthracene	U U U	บ บ บ บ		10 10 10 10
Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene	บ บ บ	U U U		10 10 10
Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	U U U	U U U	 	10 10 10
ate Received Jate Extracted Date Analyzed	11/21/01 11/24/01	11/20/01 11/21/01 11/28/01		

TABLE SV-1.1 7001-2791B TRC ENVIRONMENTAL PAH'S

All values are ug/L.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	Method Blank SBLKKP SBLKKP 1.00	EB111501 012791B-01 SBLKKP 1.00	Quant. Limits with no Dilution
Naphthalene 2-Methylnaphthalene	บ บ บ	บ บ บ	10 10 10
Acenaphthylene Acenaphthene Fluorene	U U U	U U U	10
Phenanthrene Anthracene Fluoranthene	U TT	U U	10 10 10
Pyrene Benzo(a) anthracene Chrysene	U U U U	บ ช บ	10 10 10
Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene	U U U	์ บ บ	10 10 10
Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	U U	Ü	10 10
Date Received Date Extracted Date Analyzed	11/20/01 11/28/01	11/16/01 11/20/01 11/28/01	

TABLE SV-1.2 7001-2791B TRC ENVIRONMENTAL PAH'S

All values are ug/Kg dry weight basis.

KWP 01279 KWP SBL 00 1. U 2. U 1. U 3	62 SBLKV 62 1.65 6J 2.86 7J 2.15 5.26 U 553	Quant. B-03 Limits WP with n 5 Diluti J 3.3 J 3.3 J 3.3 J 3.3 J 3.3
nk VC1 KWP 01279 KWP SBL 00 1. U 2. U 1. U 3 U 3	1B-02 0127911 KWP SBLKV 62 1.65 6J 2.86 7J 2.16 J 5.26 U 53	Quant. B-03 Limits WP with n 5 Diluti J 3.3 J 3.3 J 3.3 J 3.3 J 3.3
nk VC1 KWP 01279 KWP SBL 00 1. U 2. U 1. U 3 U 3	1B-02 0127911 KWP SBLKV 62 1.65 6J 2.86 7J 2.16 J 5.26 U 53	Quant. B-03 Limits WP with n 5 Diluti J 3.3 J 3.3 J 3.3 J 3.3 J 3.3
KWP 01279 KWP SBL 00 1. U 2. U 1. U 3. U 3. U 3.	KWP SBLKV 62 1.65 6J 2.86 7J 2.16 J 5.26 U 53	B-03 Limits WP with n 5 Diluti J 3.3 J 3.3 J 3.3 J 3.3 J 3.3 J 3.3
KWP SBL 00 1. U 2. U 1. U 3 U .8	KWP SBLKV 62 1.65 6J 2.86 7J 2.16 J 5.26 U 53	WP with n 5 Diluti J 3.3 3.3 J 3.3 J 3.3 3.3 3.3 3.3
KWP SBL 00 1. U 2. U 1. U 3 U .8	62 SBLKV 62 1.65 6J 2.86 7J 2.15 5.26 U 553	5 Diluti J 3.3 J 3.3 J 3.3 J 3.3 J 3.3 J 3.3
00 1. U 2. U 1. U 3	62 1.65 6J 2.86 7J 2.16 5.26 U .53	5 Diluti J 3.3 J 3.3 J 3.3 J 3.3 J 3.3 J 3.3
U 2. U 1. U 3 U .8	6J 2.86 7J 2.16 J 5.26 U .53	J 3.3 J 3.3 J 3.3 J 3.3 J 3.3
U 1. U 3 U .8	70 2,10 J 5,20 U .530	J 3.3 J 3.3 J 3.3 J 3.3
U 1. U 3 U .8	70 2,10 J 5,20 U .530	J 3.3 J 3.3 J 3.3 J 3.3
U 3 U .8	ປ 5.20 ປ 253ເ	J 3.3 J 3.3 3.3
U U .8	υ .53.	3.3 3.3
U .8		3.3
_		
	3 11	3.3
		AND AND ASSESSMENT OF THE PROPERTY OF
	progression of the service of the First progression representation of the service of the servic	
U 8.		
U 9. U 8.		
Control Control Selection of Control C		0000000 (U.S. WINSE II)
_	17	
	22	Section of the sectio
OBLIGOROS DODORRADAS NASALONS POR LA CONTRACTOR DE LA CON	22	
U 1		Second Control of the
บ 1 บ	u u	3.3
บ 1 บ		
U 1 U 1 U 1	u U L6 34	
U 1 U 1 U 1 11/1	U U 34 16 34 16/01 11/16	/01
U 1 U 1 U 1 U 1 28/01 11/2	u U L6 34	/01 /01
	a	11 1 10 1 24

TABLE SV-1.3 7001-2791B TRC ENVIRONMENTAL PAH'S

All values are ug/Kg dry weight basis.

Client Sample I.D.	VC10.K	VC15.B	VC10.J	
Lab Sample I.D. Method Blank I.D. Quant. Factor	012791B-04 SBLKWP 1.60	012791B-05 SBLKWP 1.66	012791B-06 SBLKWP 1.67	Quant. Limits with no Dilution
Naphthalene	4.5J	4.3J	5J	3.3
2-Methylnaphthalene	3.30	2,6J	3.30	3.3
Acenaphthylene	11	13	15	3.3
Acenaphthene	1.90	1.9ป	2,40	3,3
Fluorene	3 J	2.6J	2.9J	3.3
Phenanthrene	26	23	33	3.3
Anthracene	9.9	9.5	13	3.3
Fluoranthene	40	36	56	2.00 Š 0 Š
Pyrene	120	110	130	3.3
Benzo(a) anthracene	35	34	40	
Chrysene	38 40	39 38	49 51	3.3
Benzo(b) fluoranthene	37	36 40	58	3.3
Benzo(k) fluoranthene Benzo(a) pyrene	49	48	70	3.3
Indeno(1,2,3-cd)pyrene	51	53	66	3.3
Dibenzo(a,h)anthracene	TU TU	11	18	3.3
Benzo(g,h,i)perylene	74	72	92	3.3
	1		1	
Date Received	11/16/01	11/16/01	11/16/01	٠
Date Extracted	11/28/01	11/28/01	11/28/01	
Date Analyzed	12/04/01	12/04/01	12/04/01	

See Appendix for qualifier definitions

TABLE SV-1.4 7001-2791B TRC ENVIRONMENTAL PAH'S

All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	VC10.E 012791B-09 SBLKWP 1.95	VC10.D 012791B-10 SBLKWP 1.85	VC10.D MS 012791B-10MS SBLKWP 1.83	Quant. Limits with no Dilution
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	U 2.4J U U 4.2J U 6.5 17 U U 8.4 5.6J U	U U 2.5J U U 5J 2.2J 9 24 6.4 9.6 8.6 11 8.4 U	100X 110 130X 130X 140X 150X 140X 280EX 160EX 150X 160EX 130X 140X 220EX 220EX	3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3
Penzo(g,h,i)perylene 'ate Received Jate Extracted Date Analyzed	11/20/01 11/28/01 12/04/01	11/20/01 11/28/01 12/05/01	11/20/01 11/28/01 12/05/01	

TABLE SV-1.5 7001-2791B TRC ENVIRONMENTAL PAH'S

All values are ug/Kg dry weight basis.

			_ · · - · · · · · · · · · · · · · · · ·	
	VC10.D	_		Ì
Client Sample I.D.	MSD	VC10.F	VC10.H	Ouant.
	012791B-10 MSD	012791B-11	012791B~12	Limits
Lab Sample I.D.	SBLKWP	SBLKWP	SBLKWP	with no
Method Blank I.D. Ouant. Factor	1.85	1.80	1.75	Dilution
Quant. Pactor	 	<u> </u>		
Naphthalene	73X	3.8J	3 J	3.3
2-Methylnaphthalene	80	2.3J	2J	3.3 3.3
Acenaphthylene	98X	9.9 1.3J	8 10	
Acenaphthene	100X 100X	2.1J	ប	3.3
Fluorene	110X	2.10	17	323
Phenanthrene Anthracene	110X	8.6	7	3.3
Antimacene Fluoranthene	88%	48	31	3,3
Pyrene	220EX	100	79	3.3
Benzo(a) anthracene	130X	43	26	3.3
Chrysene	120X	47	31	3.3
Benzo(b)fluoranthene	120X	40	30 27	· 3.3
Benzo(k) fluoranthene	110X	35 50	35	I .
Benzo(a)pyrene	120X 180EX	28	22	3.3
Indeno(1,2,3-cd)pyrene	170EX	ขึ้น	Ü	
Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	210EX	38	31	3.3
Benzo (g/H/T/per/Tene		 		
Date Received	11/20/01	11/20/01	11/20/01	
Date Extracted	11/28/01	11/28/01	11/28/01	1
Date Analyzed	12/05/01	12/05/01	12/05/01	,
	l	<u> </u>	<u>L</u>	<u> </u>

TABLE SV-1.6 7001-2791B TRC ENVIRONMENTAL PAH'S

All values are ug/Kg dry weight basis.

Client Sample I.D.	VC10.G			_
- 1 - 1 - 5	0107010 13	<u>.</u>		Quant. Limits
Lab Sample I.D.	012791B-13	j		with no
Method Blank I.D.	SBLKWP			
Quant. Factor	1.81	<u> </u>		Dilution
			•	2 2
Naphthalene	U U	N.A. JANSANA, A. ANDE JA J. STEEDOOGOUGOAGOOGO	50000000000000000000000000000000000000	3.3
2-Methylnaphthalene	1,75			3.3 3.3
Acenaphthylene	9.9			3.3
Acenaphthene				
Fluorene	U.			3.3
Phenanthrene	Ŭ 11 4 7.1			3.3
Anthracene	2.70			3.3
Fluoranthene	25			3.3
Pyrene	40			3.3
Benzo (a) anthracene	23			3.3 3.3
Chrysene	29 21			3.3
Benzo(b) fluoranthene	21			3,3
Benzo(k) fluoranthene	21	·	·	3.3
Benzo(a)pyrene	24 15			3.3
Indeno(1,2,3-cd)pyrene	15		j.	3.3
Dibenzo (a, h) anthracene	Ü			3.3
Benzo(g,h,i)perylene	20	<u> </u>	<u> </u>	3.3
	T			
Date Received	11/20/01		,	
ate Extracted	11/28/01			
Jate Analyzed	12/06/01] .	
. •			1	

TABLE GC-2.0 7001-2791B TRC ENVIRONMENTAL 8082 POLYCHLORINATED BIPHENYL'S

All values are ug/L.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	Method Blank 112601-B08 PBLK85 5.00	EB111701 012791B-08 PBLK85 1.05	PBLK85 QC2 112601-B08 QC2 PBLK85 5.00	Quant. Limits with no Dilution
Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260	U U U U U U U	ם ט ט ט ט ט	U U U 19.X U U 23.X	1.0 2.0 1.0 1.0 1.0 1.0
Date Received Date Extracted Date Analyzed	11/26/01 11/30/01	11/20/01 11/26/01 12/01/01	11/26/01 12/08/01	

TABLE GC-2.1 7001-2791B TRC ENVIRONMENTAL 8082 POLYCHLORINATED BIPHENYL'S

All values are ug/L.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	Method Blank 112001-B08 PBLK75 1.00	EB111501 012791B-01 PBLK75 1.00	PBLK75 QC2 112001-B08 QC2 PBLK75 1.00	Quant. Limits with no Dilution
Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260	U U U U U U	ប ប ប ប ប ប ប	U U U 4.9X U U U 4.9X	1.0 2.0 1.0 1.0 1.0 1.0
Date Received Date Extracted Date Analyzed	11/20/01 12/08/01	11/16/01 11/20/01 12/08/01	11/20/01 12/08/01	

TABLE GC-2.2 7001-2791B TRC ENVIRONMENTAL 8082 POLYCHLORINATED BIPHENYL'S

All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	Method Blank 112601-S04 PCBLK83 0.200	VC10.MB 012791B-02 PCBLK83 0.330	VC10.L 012791B-03 PCBLK83 0.337	Quant. Limits with no Dilution
Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260	U U U U U	<u>।</u> वित्व व व व व	U U U U 2.90	33. 67. 33. 33. 33. 33.
Date Received Date Extracted Date Analyzed	11/26/01 12/05/01	11/16/01 11/26/01 12/05/01	1.7J 11/16/01 11/26/01 12/05/01	33.

TABLE GC-2.3 7001-2791B TRC ENVIRONMENTAL 8082 POLYCHLORINATED BIPHENYL'S

All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	VC10.K 012791B-04 PCBLK83 0.322	VC15.B 012791B-05 PCBLK83 0.325	VC10.J 012791B-06 PCBLK83 0.336	Quant. Limits with no Dilution
Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254	U U U U U	U U U U U U 1.4J	U U U U U U 2,3J	33. 67. 33. 33. 33. 33.
Date Received Date Extracted Date Analyzed	11/16/01 11/26/01 12/05/01	11/16/01 11/26/01 12/05/01	11/16/01 11/26/01 12/05/01	

Soil

TABLE GC-2.4 7001~2791B TRC ENVIRONMENTAL 8082 POLYCHLORINATED BIPHENYL'S

All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	VC10.E 012791B-09 PCBLK83 0.388	VC10.D 012791B-10 PCBLK83 0.364	VC10.D MS1 012791B-10 MS1 PCBLK83 0.368	Quant. Limits with no Dilution
Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260	ប ប ប ប ប ប ប	U U U U U 1.5J	ប ប ប ប ប ប 100x	33. 67. 33. 33. 33. 33.
Date Received Date Extracted Date Analyzed	11/20/01 11/26/01 12/05/01	11/20/01 11/26/01 12/05/01	11/20/01 11/26/01 12/05/01	

Soil

TABLE GC-2.5 7001-2791B TRC ENVIRONMENTAL 8082 POLYCHLORINATED BIPHENYL'S

All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	VC10.D MSB1 012791B-10 MSB1 PCBLK83 0.200	VC10.D MSD1 012791B-10 MSD1 PCBLK83 0.368	VC10.F 012791B-11 PCBLK83 0.356	Quant. Limits with no Dilution
Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248	U U U U U	U U U U	U U U U	33. 67. 33. 33. 33.
Aroclor-1254 Aroclor-1260	88.X	170X	2.6J	33.
Date Received Date Extracted Date Analyzed	11/20/01 11/26/01 12/05/01	11/20/01 11/26/01 12/05/01	11/20/01 11/26/01 12/05/01	

TABLE GC-2.6 7001-2791B TRC ENVIRONMENTAL 8082 POLYCHLORINATED BIPHENYL'S

All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	VC10.H 012791B-12 PCBLK83 0.347	VC10.G 012791B-13 PCBLK83 0.364	Quant. Limits with no Dilution
Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260	U U U U U D 2.9J	U U U U U U U 2.4J	33. 67. 33. 33. 33. 33. 33.
Date Received Date Extracted Date Analyzed	11/20/01 11/26/01 12/05/01	11/20/01 11/26/01 12/05/01	

See Appendix for qualifier definitions

Aqueous

TABLE AS-1.0 7001-2791B TRC ENVIRONMENTAL MISCELLANEOUS ATOMIC SPECTROSCOPY

All values are ug/L.

Client Sample I.D.	EB111501	EB111701		:
Lab Sample I.D.	012791B-01	012791B-08		
Arsenic Cadmium	4.6U 0.80U	4.6U 0.80U	- -	-
Chromium Copper	1.0U 1.5U	1,00 1,50		
Lead Mercury	2.3U 0.10U	2.3U 0.10U		
Nickel Zinc	1.3U 5.2B	1.3U 5.0U		

TABLE AS-1.1 7001-2791B TRC ENVIRONMENTAL MISCELLANEOUS ATOMIC SPECTROSCOPY

All values are mg/Kg dry weight basis.

			٠,	
Client Sample I.D.	VC10.MB	VC10.L	VC10.K	VC15.B
Lab Sample I.D.	012791B-02	012791B-03	012791B-04	012791B-05
Arsenic Cadmium	6.8 0.21 0	6.8	5.3	5.6
Chromium Copper	30,0 14.9	0.23U 34.3 25.0	0.18U 31.7 29.8	0.20 0 32.3 24.3
Lead Mercury	10.5 0.018	16.4 0.064	16.6 0.022	16.0 0.021
Nickel Zinc	19.6 61.4	20.0 79.6	17.7 80.9	18.6 76.5

Soil

TABLE AS-1.2 7001-2791B TRC ENVIRONMENTAL MISCELLANEOUS ATOMIC SPECTROSCOPY

All values are mg/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D.	VC10.J 012791B-06	VC10.E 012791B-09	VC10.D 012791B-10	VC10.D D 012791B-10D
Arsenic Cadmium	7.5 0.260	6.7 0.290	8.5 0.25 0	8.0 0.26U
Chromium Copper	29.1 10.6	36.9 23.2 16.1	43.6 48.2 25.3	43.2 41.7 23.9
Lead Mercury Nickel	7.7 0.032 19.3 55.8	0.026 21.3 78.4	0.018 22.6 114.	0.0083U 22.5 108.

TABLE AS-1.3 7001-2791B TRC ENVIRONMENTAL MISCELLANEOUS ATOMIC SPECTROSCOPY

All values are mg/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D.	VC10.D S 012791B-10S	VC10.F 012791B-11	VC10.H 012791B-12	VC10.G 012791B-13
Arsenic	20.6	6.3	5.2	7.3
Cadmium	1.6	0.26U	0.170	0.260
Chromium	106.	37.9	27.1	35.6
Copper	121.	23.5	10.6	17.7
Lead	34.1	17.5	7.5	11.4
Mercury	0.074	0.028	0.044	0.016
Nickel	172.	22.2	18.1	22.1
Zinc	257.	81.5	53.0	72.2

SAMPLE NO.

VC10.MB

Name: STL	Contract:
Lab Code: STL Case No.: 2791B	SAS No.: SDG No.: <u>B2791</u>
Matrix (soil/water): <u>SOIL</u>	Lab Sample ID: <u>012791B-02</u>
% Solids: <u>59.5</u>	Date Received: <u>11/16/01</u>

CAS No.	Analyte	Concentration	C	Units	Q	1
	Percent Moisture	40.5			ļ . —	1
	TOC	9630		mg/Kg		1
•	TOC	10100		mg/Kg		1
	TOC	10900		mg/Kg		1
						Г
						T.
						Г
				-	-	Γ
						Г
						Г
				,	-	Г
						Г
			•			Γ
						Ī.
, .						Г
		1				Г
		-				Г
						Г
		,				Г
				,		Г
-						Г
				_		Г
		 -: 				
		 				
		 		_		1

Comm	ments:					
				 ,		
		 				
		 	 ·		•	

SAMPLE NO.

VC1	Ο.	L	
		_	

	VC10.11
Lab Name: STL	Contract:
Lab Code: <u>STL</u> Case No.: <u>2791B</u>	SAS No.: SDG No.: <u>B2791</u>
Matrix (soil/water): SOIL	Lab Sample ID: <u>012791B-03</u>
k Solids: <u>57.7</u>	Date Received: 11/16/01

CAS No.	Analyte	Concentration	C.	Units	Q	М
	Percent Moisture	42.3				G
	TOC	11000		mq/Kq		E
	TOC	12200		mg/Kg		I
	TOC	12000		mg/Kg		I
						Г
						Γ
·						Г
<u> </u>						Ŀ
· · · · · · · · · · · · · · · · · · ·						ᆫ
· 	<u> </u>					_
<u> </u>	·					ᆫ
						!
						L
	· · · · · · · · · · · · · · · · · · ·					L
						┕
						╙
	 	· · · · · · · · · · · · · · · · · · ·				⊢
	 			· · · · · ·		▙
		<u> </u>				
		 - , - - 		-		\vdash
					<u></u>	├-
_ 	<u> </u>					╙

· · · ·		· .		-			
					-	 	
_	<u>·</u>	<u>. </u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			

SAMPLE NO.

ië Vame: <u>STL</u>	Contract:
ab Code: STL Case No.: 2791B	SAS No.: SDG No.: <u>B2791</u>
latrix (soil/water): <u>SOIL</u>	Lab Sample ID: <u>012791B-04</u>
Solids: <u>58.2</u>	Date Received: <u>11/16/01</u>

CAS No.	Analyte	Concentration	С	Units	Q	м
	Percent Moisture	41.8	-			G
	TOC	10700	·	mg/Kg		D
*	TOC	10900		mg/Kg		D
	TOC	11200	_	mg/Kg		D
 						<u> </u>
· · · · · · · · · · · · · · · · · · ·						
						Ŀ
		·				L
					Ŀ	<u> </u>
······································		, ,				<u> </u>
, ,						ļ
		1				ļ
<u>-</u>		<u>. </u>		<u></u>	<u> </u>	┖
				<u> </u>		┝
					ļ	
•					ļ	<u> </u>
			<u> </u>			↓ _
		<u> </u>		<u> </u>		<u> </u>
					ļ	╄
					ļ	├
						╄
•			L		<u> </u>	╄
			<u> </u>	<u></u>	 	╂—
		<u> </u>	<u>L</u> _			╄
		ľ	l	1 '	}	ĺ

Comm	ents:					
•		· · · · · · · · · · · · · · · · · · ·	 		 	
,				· ·	 ·	

SAMPLE NO.

VC10.J

Lab Name: STL	Contract:
Lab Code: STL Case No.: 2791B	SAS No.: SDG No.: <u>B2791</u>
Matrix (soil/water): <u>SOIL</u>	Lab Sample ID: <u>012791B-06</u>
Solids: 59.1	Date Received: 11/16/01

CAS No.	Analyte	Concentration	C	Units	Q	1
	Percent Moisture	40.9		· · · · · · · · · · · · · · · · · · ·	<u> </u>	1
	TOC	11000		mq/Kq	· · ·	1
	TOC	10600	-	mg/Kg		Ī
	TOC	11500		mg/Kg		T
			, ,			F
			•		 	┢
						-
	· · · · · · · · · · · · · · · · · · ·		,			┝
					` 	尸
· · · · · · · · · · · · · · · · · · ·			-		-	H
		·				⊢
- · · · - · · · · · · · · · · · · · · ·		 		-		⊢
· 		· · · · · · · · · · · · · · · · · · ·				⊢
				·	`	\vdash
	 :					-
		-1 -	+	 .	-	┢
	· · · · · · · · · · · · · · · · · · ·	 				┢
					-	⊢
· · · · · · · · · · · · · · · · · · ·						上
		 				├
	 	J				ŀ
						┝
						\vdash
 		1				⊢
	<u> </u>					L

omments:				
	<u> </u>			
		· .	· · · · · · · · · · · · · · · · · · ·	
	·			

SAMPLE NO

•		7
VC10.E		

ab Name: STL	Coi	ntract:	
ده Code: <u>STL</u> Case No.:	2791B SAS	S No.:	SDG No.: <u>B2791</u>
Matrix (soil/water): <u>SOIL</u>	•	Lab Sample ID	<u>012791B-09</u>
Solids: <u>54.4</u>	•	Date Received:	: 11/20/01

CAS No.	Analyte	Concentration	С	Units	Q.	1
	Percent Moisture	45.6	·			1
	TOC	14200		mg/Kg		
· .	TOC	13800		mg/Kg		
·	TOC	13800		mg/Kg	<u> </u>	
						Ľ
· · · · · · · · · · · · · · · · · · ·		·		·		┞-
· · · · · · · · · · · · · · · · · · ·					<u> </u>	╀
, -				-	 	₽
	<u> </u>	<u> </u>			 	┞
· · · · · · · · · · · · · · · · · · ·	 					Ͱ
	,					⊢
-						H
·	· · · · · · · · · · · · · · · · · · ·					t
						T
						Γ
		·				
•						L
·						L
<u>. </u>					 	L
- 				·		╀
		<u> </u>			—	Ļ
		<u> </u>				Ł
	<u>L</u> .	<u> </u>			<u>'</u>	L

omments:				·		
	 0		•			
					•	
		 		··.		-
	•	 		-		:

SAMPLE NO.

VC10.D	
--------	--

•	1 0 2 0 1 2
ab Name: STL	Contract:
ab Code: STL Case No.: 2791B	SAS No.: SDG No.: <u>B2791</u>
Matrix (soil/water): <u>SOIL</u>	Lab Sample ID: <u>012791B-10</u>
Solids: 53.9	Date Received: 11/20/01

CAS No.	Analyte	Concentration C	Units	Q	М
	Percent Moisture	46.1			G
	TOC	13200	mg/Kg		D
· .	TOC	13500	mg/Kg		D
	TOC	14200	mg/Kg		D
				,	
	* * *		. ,		
					l
					İ
	<u>l</u>				
		8			
<u> </u>		·		,	
<u> </u>		,			
:					l
					Ĺ
	<u> </u>				
		 			T -

:omment	ts:				-
· <u> </u>		 			
			:		
···					
				<u> </u>	

SAMPLE NO.

VC10.F

		L
a Name: <u>STL</u>	·	Contract:
ab Code: <u>STL</u>	Case No.: <u>2791B</u>	SAS No.: SDG No.: <u>B2791</u>
atrix (soil/water):	SOIL	Lab Sample ID: <u>012791B-11</u>
Solids:	56.2	Date Received: <u>11/20/01</u>

CAS No.	Analyte	Concentration	C _.	Units	Q	М
	Percent Moisture	43.8				G
	TOC	14500		mg/Kg		D
	TOC	13500		mg/Kg		I
	TOC	15000		mg/Kg		I
,			_	٠.		L
						乚
				·		<u> </u>
					•	Ļ _
•						┺
				, 		▙
						├
						ļ.,
			_			╀
					<u> </u>	╂
· ,						╀╌
				.	-	╀
					-	╀╌
						╂╌
<u> </u>				ļ.—	<u> </u>	╂
<u> </u>		_			-	1-
					 -	╂┈
·				<u> </u>	├	╁
			_		├	╂╌
· · · · · · · · · · · · · · · · · · ·					├	╄

Comm	ents:					
,		· · · · · · · · · · · · · · · · · · ·	-			
				1,		
٠.	·	 		<u>.</u>	· .	

SAMPLE NO.

VC10.H

	·
ab Name: STL	Contract:
ab Code: STL Case No.: 2791B	SAS No.: SDG No.: <u>B2791</u>
atrix (soil/water): <u>SOIL</u>	Lab Sample ID: <u>012791B-12</u>
Solids: <u>57.5</u>	Date Received: <u>11/20/01</u>

CAS No.	Analyte	Concentration C	Units	Q	М
	Percent Moisture	42.5			G
	TOC	11800	mg/Kg	,	Ī
	TOC	10500	mg/Kg		I
	TOC	· · · · · · · · · · · · · · · · · · ·	mg/Kg		Ι
			1		
					Г
•					
			-		
		·			_ ·
					Г
_ -					
			1		
			1		
					ſ
			1		

ments:					
		 	<u> </u>	<u>-</u> •.	·
	·	 			
·	·	 	<u> </u>	· <u>- · · - · · · · · · · · · · · · · · ·</u>	
				•	•

WET CHEM ANALYSIS DATA SHEET

SAMPLE	NO.

VC10.G	
VC10.G	

·			
Jar Name: <u>STL</u>		Contract:	-
Lau Code: <u>STL</u> Cas	se No.: <u>2791B</u> S	SAS No.:	SDG No.: <u>B2791</u>
Matrix (soil/water): <u>SC</u>	<u>JIL</u>	Lab Sample II): <u>012791B-13</u>
⊱ Solids: <u>5</u> 5	5.5_	Date Received	l: <u>11/20/01</u>

CAS No.	Analyte	Concentration	C	Units	Q	1
	Percent Moisture	44.5		· -		1
····	TOC	13800		mg/Kg		Γ
	TOC	13000		mg/Kg		
	TOC	13000		mg/Kg		
						L
						L
						L
						L
						L
						L
				,		L
						L
						L
<u> </u>						L
<u>-</u>				·		L
						L
						╀
<u> </u>						┞
<u> </u>						┡
:						╁-
· -		_				╀
						╀
		<u> </u>				┞
	<u> </u>			<u> </u>	L	L

Com	ents	:		•					•	
	•							 		
	-,			 	•					
			·	 			 -	 		
•				 		 • • •	 -			

ORGANICS APPENDIX

- U Indicates that the compound was analyzed for but not detected.
- J Indicates that the compound was analyzed for and determined to be present in the sample. The mass spectrum of the compound meets the identification criteria of the method. The concentration listed is an estimated value, which is less than the specified minimum detection limit but is greater than zero.
- B-This flag is used when the analyte is found in the blanks as well as the sample. It indicates possible sample contamination and warns the data user to use caution when applying the results of this analyte.
- N Indicates that the compound was analyzed for but not requested as an analyte. Value will not be listed on tabular result sheet.
- S Estimated due to surrogate outliers.
- X Matrix spike compound.
- (1) Cannot be separated
- (2) Decomposes to azobenzene. Measured and calibrated as azobenzene.
- A This flag indicates that a TIC is a suspected aldol condensation product.
- E Indicates that it exceeds calibration curve range.
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor.
- C Confirmed by GC/MS.
- T Compound present in TCLP blank.
- P This flag is used for a pesticide/aroclor target analyte when there is a greater than 25 percent difference for detected concentrations between the two GC columns (see Form X).

INORGANICS APPENDIX

C - Concentration qualifiers

- U Indicates analyte was not detected at method reporting limit.
- B- Indicates analyte result between IDL and contract required detection limit (CRDL)

Q-QC qualifiers

- E Reported value is estimated because of the presence of interference
- M Duplicate injection precision not met
- N Spiked sample recovery not within control limits
- ⁻S The reported value was determined by the method of standard additions (MSA)
- W Post-digest spike recovery furnace analysis was out of 85-1.15 percent control limit, while sample absorbance was less than 50 percent of spike absorbance
- * Duplicate analysis not within control limit
- + Correlation coefficient for MSA is less than 0.995

M - Method codes

P-ICP

A - Flame AA

F - Furnace AA

CV - Cold vapor AA (manual)

C – Cyanide

NR - Not required

NC – Not calculated as per protocols

December 20, 2001

STI. Connecticut 128 Long Hill Cross Road Shelton, CT 06484

Tel: 203 929 8140 Fax: 203 929 8142 www.stl-inc.com

Ms. Megan Brown TRC ENVIRONMENTAL 5 Waterside Crossing Windsor, CT 06095

Dear Ms. Brown:

Please find enclosed the analytical results of 33 sample(s) received at our laboratory on November 7-16, 2001. This report contains sections addressing the following information at a minimum:

. sample summary

definition of data qualifiers and terminology

analytical methodologystate certifications

analytical results chain-of-custody

STL Report #7001-2791A	Purchase Order #38077
Project ID: ISLANDER EAST	

Copies of this analytical report and supporting data are maintained in our files for a minimum of five years unless special arrangements have been made. Unless specifically indicated, all analytical testing was performed at this laboratory location and no portion of the testing was subcontracted.

We appreciate your selection of our services and welcome any questions or suggestions you may have relative to this report. Please contact your customer service representative at (203) 929-8140 for any additional information. Thank you for utilizing our services; we hope you will consider us for your future analytical needs.

I have reviewed and approved the enclosed data for final release.

MON CHURCH

Laboratory Manager

JCC

This report contains 31 pages.

7001-2791A TRC ENVIRONMENTAL

Case Narrative

Sample Receipt –The samples that were received on November 7th and 14th were received at 9°C and samples that were received on November 9th were received at 10°C and the samples received on November 16th were received at 8°C. The client was notified, and the laboratory was instructed to proceed with the analyses.

Pesticides - Pesticide samples were extracted and analyzed by GC/ECD using guidance provided in Methods 3510C/3550B/8082. The instrumentation used was a Hewlett-Packard Gas Chromatograph equipped with an Electron Capture Detector (Ni63).

All soil samples were very wet and required additional sodium sulfate during the extraction procedure.

All soil samples were spiked with surrogate and spike at the normal volume. However, samples were brought to 5 times the normal final volume, causing the spiked compounds to be elevated. Recoveries were calculated accordingly.

VC10.WMSB was not extracted. An LCS was extracted and analyzed with this batch of samples. An LCS is similar to an MSB with the exception of an additional Aroclor in the spike mix.

Surrogate percent recoveries were below QC limits for Tetrachloro-m-xylene in PBLK07 and PBLK07QC1.

Spike percent recoveries for beta-BHC, Heptachlor, and Heptachlor Epoxide were below QC limits in PBLK07QC1. These compounds were not present in any of the samples associated with this LCS.

Heptachlor Epoxide had only a 4 point initial calibration curves analyzed on 12/14/01 and 12/18/01 on the RTX-35 column. This compound had a contamination peak present that interfered with Heptachlor Epoxide in the first mix of the curve. This standard is being re-prepped.

The result for 4,4'-DDT had little to no recovery on the RTX-35 column in samples VC10.WMS2 and VC10.WMSD2. The sample matrix of the previous samples analyzed caused severe breakdown of this compound.

Results for 4,4'-DDD and Endosulfan II were reported from the RTX-35 column in PBLK58QC1, PBLK69QC1, and PBLK07QC1 due to coelution on the DB-1701 column.

Results for Endosulfan I and alpha-Chlordane were reported from the DB-1701 column in PBLK58QC1, PBLK69QC1, and PBLK07QC1 due to coelution on the RTX-35 column.

Results for Endosulfan I and alpha-Chlordane were elevated in PBLK65QC1 due to coelution.

The % breakdown for 4,4'-DDT was outside of QC limits in the IBS analyzed at 17:46 on 12/07/01 on the DB-1701 column. The % differences for Heptachlor, 4,4'-DDD, 4,4'-DDT, and Methoxychlor were below QC limits in the INDA3 analyzed at 18:27 on 12/07/01 on the DB-1701 column. Samples were run twice with similar results. Sample matrix was the cause. These were the end bracketing standards for samples VC10.AB, VC10.B, VC10.W, VC10.V, VC10.T, VC15.A, VC10.N, VC10.S, VC10.P, PBLK69, and PBLK69QC1.

The % breakdown for 4,4'-DDT was outside of QC limits in the IBS analyzed at 03:53 on 12/10/01 on the DB-1701 column. The % difference for Endosulfan Sulfate was above QC limits in the INDB3 standard analyzed at 05:15 on 12/11/01 on the DB-1701 column. Sample matrix was the cause of the breakdown. These were the end bracketing standards for samples VC10.WMS2, VC10.WMSD2, VC10.Q, VC10.RA, VC10.OA, VC10.OAD1, and VC10.OAD2. There was no Endosulfan Sulfate present in any of these samples above the reporting limit.

The % breakdown for 4,4'-DDT was outside of QC limits in the IBS analyzed at 20:14 on 12/18/01 on the DB-1701 column. Sample matrix was the cause. This was the end bracketing standard for samples VC10.I, VC10.C, PBLK07, and PBLK07QC1.

The % breakdown for 4,4'-DDT was complete in the IBS analyzed at 17:22 on 12/16/01 on the RTX-35 column. The % difference for Endrin Ketone was below QC limits in the INDB3 analyzed at 17:59 on 12/16/01 on the RTX-35 column. Sample matrix was the cause. These were the end bracketing standards for samples VC10.AB, VC10.B, VC10.W, VC10.V, VC10.T, VC15.A, VC10.N, PBLK69, and PBLK69QC1.

The % breakdown for 4,4'-DDT was complete in the IBS analyzed at 01:20 on 12/18/01 on the RTX-35 column. The % differences for gamma-BHC, Heptachlor, Endrin and 4,4'-DDD were outside of QC limits and there was no recovery of 4,4'-DDT or Methoxychlor in the INDA3 analyzed at 01:56 on 12/18/01 on the RTX-35 column. Sample matrix was the cause. These were the end bracketing standards for samples VC10.WMS2, VC10.WMSD2, VC10.S, VC10.P, VC10.Q, VC10.RA, VC10.OA, VC10.OAD1, and VC10.OAD2.

The % breakdown for 4,4'-DDT was complete in the IBS analyzed at 08:52 on 12/19/01 on the RTX-35 column. The % differences for beta-BHC, Endosulfan Sulfate, Endrin Ketone, alpha-Chlordane, gamma-Chlordane, and Decachlorobiphenyl were outside of QC limits inn the INDB3 standard analyzed at 09:29 on 12/19/01 on the RTX-35 column. Sample matrix was the cause. These were the end bracketing standards for samples VC10.I, VC10.C, PBLK07, and PBLK07QC1.

Manual integrations were performed if required, and any affected peaks were designated with an "MM" on the area report in the column titled "Code". Manual integrations were initialed by the analyst that performed the integration.

Sample Calculation: Sample ID - VC10.B Compound - 4,4'-DDE

(70389area)(2000ul) = 0.85ug/kg(11020531area/ng)(30.5g)(.49)(1ul)

TABLE GC-1.0 7001-2791A TRC ENVIRONMENTAL 8081A PESTICIDES

All values are ug/L.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	Method Blank 111401-B04 PBLK61 1.00	EB110601 012791A-01 PBLK61 1.00	PBLK61 QC1 111401-B04 QC1 PBLK61 1.00	Quant. Limits with no Dilution
alpha-BHC beta-BHC delta-BHC gamma=BHC (Lindane) Heptachlor	บ บ บ บ	บ 	0.19X 0.21X 0.14X 0.18X 0.21X	0.050 0.050 0.050 0.050 0.050
Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4,44-DDE Endrin	l i it	T U U U	0.20X	0.050
Endosulfan II 4,4'-DDD Endosulfan Sulfate 4,4'-DDT Methoxychlor	្រ ប ប	Ü Ü U U	0.21X 0.20X 0.19X 0.20X 0.25JX	0.10 0.10 0.10 0.10 0.50
Endrin Ketone idrin Aldehyde Ipha-Chlordane gamma-Chlordane Toxaphene	t U	Į Ū	0.22X 0.20X 0.19X 0.20X	0.10 0.10 0.050 0.050 2.5
Date Received Date Extracted Date Analyzed	11/14/01 11/16/01	11/07/01 11/14/01 11/16/01	11/14/01 11/16/01	·

TABLE GC-1.1 7001-2791A TRC ENVIRONMENTAL 8081A PESTICIDES

All values are ug/L.

				
Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	Method Blank 111601-B06 PBLK65 1.00	EB110801 012791A-04 PBLK65 1.00	EB111301 012791A-11 PBLK65 1.00	Quant. Limits with no Dilution
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor	u U	U Second	. 77	0.050 0.050 0.050 0.050 0.050
Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4° DDE		U U U U	7	0.050 0.050 0.050
Endosulfan II 4,4'-DDD Endosulfan Sulfate 4,4'-DDT	0 0 0		U U U	0.10 0.10 0.10 0.10
Methexychlor Endrin Ketone Endrin Aldehyde alpha-Chlordane gamma-Chlordane Toxaphene	U No. A SUNCE AND U	บ รือ 25 - บ ับ 12 - 23 บ ี 1	ប ប ប	0.10 0.10 0.050 0.050
Date Received Date Extracted Date Analyzed	11/16/01 11/22/01	11/09/01 11/16/01 11/22/01	11/14/01 11/16/01 11/22/01	2.5

Aqueous

TABLE GC-1.2 7001-2791A TRC ENVIRONMENTAL 8081A PESTICIDES

All values are ug/L.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	PBLK65 QC1 111601-B06 QC1 PBLK65 1.00		Quant. Limits with no Dilution
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide	0.12X 0.18X 0.19X 0.18X 0.19X		0.050 0.050 0.050 0.050 0.050
Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan Sulfate	0.19X 0.19X 0.20X		0.10 0.10 0.10
4,4'-DDT Methoxychlor ndrin Ketone idrin Aldehyde alpha-Chlordane gamma-Chlordane	0.19X 0.26JX 0.22X 0.21X 0.36X		0.10 0%50 0.10 0.10 0.050
Toxaphene Date Received Date Extracted Date Analyzed	11/16/01 11/22/01		

TABLE GC-1.3 7001-2791A TRC ENVIRONMENTAL 8081A PESTICIDES

All values are ug/Kg dry weight basis.

Method Blank 112801-B04 PBLK07 0.200	VC10.I 012791A-19 PBLK07 0.328	VC10.C 012791A-20 PBLK07 0.375	Quant. Limits with no Dilution
	U U	σ	l 1.7
****** ū	บ บ **** บ	ម ម ម	1.7 1.7 1.7
n D	ម ប ម	ů Ů	3.3 3.3 3.3
U U U U U U U U U U U U U U U U U U U	U U		3.3 17. 3.3 3.9
U	U 11/16/01	U 11/16/01	1.7 1.7 110
	Blank 112801-B04 PBLK07 0.200 0.042J U U U U U U U U U U U U U U U U U U U	Blank VC10.I 112801-B04 012791A-19 PBLK07 PBLK07 0.200 0.328 0.042J 0.44JB U U U U U U U U U U U U U U U U U U U	Blank VC10.I VC10.C 112801-B04 012791A-19 012791A-20 PBLK07 PBLK07 PBLK07 0.200 0.328 0.375 0.042J 0.44JB 0.70B U U U U U U U U U U U U U U U U U U U

TABLE GC-1.4 7001-2791A TRC ENVIRONMENTAL 8081A PESTICIDES

All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	PBLK07 QC1 112801-B04 QC1 PBLK07 0.200		Quant. Limits with no Dilution
alpha-BHC beta-BHC delta-BHC qamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan Sulfate 4,4'-DDT Methoxychlor Endrin ketone idrin aldehyde ipha-Chlordane gamma-Chlordane Toxaphene	2.0x 4.3x 3.9x 4.4x 4.9x 4.8x 5.4x 5.6x 6.1x 5.9x 5.0x 4.8x 5.7x 6.7x 5.8x 4.9x 5.0x		1.7 1.7 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3
Date Received Date Extracted Date Analyzed	11/28/01 12/18/01	J.	

TABLE GC-1.5 7001-2791A TRC ENVIRONMENTAL 8081A PESTICIDES

All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	Method Blank 111901-B08 PBLK69 0.200	VC10.AB 012791A-02 PBLK69 0.362	VC10.B 012791A-03 PBLK69 0.401	Quant. Limits with no Dilution
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor	i U	1 17	l 17 '	1.7 1.7
Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE	U U U	0 0 0 0	0 U U U 0.85a	1.7 1.7 3.3
Endrin Endosulfan II 4,4'-DDD Endosulfan Sulfate 4,4'-DDT	U U U U	บ บ บ บ	Ŭ D U 0.24J U	3.3 3.3 3.3
Methoxychlor Endrin ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene	O D	ប ប ប ប	U U U	3.3 3.9 1.7 1.7
Date Received Date Extracted Date Analyzed	11/19/01 12/07/01	11/07/01 11/19/01 12/07/01	11/07/01 11/19/01 12/07/01	110

TABLE GC-1.6 7001-2791A TRC ENVIRONMENTAL 8081A PESTICIDES

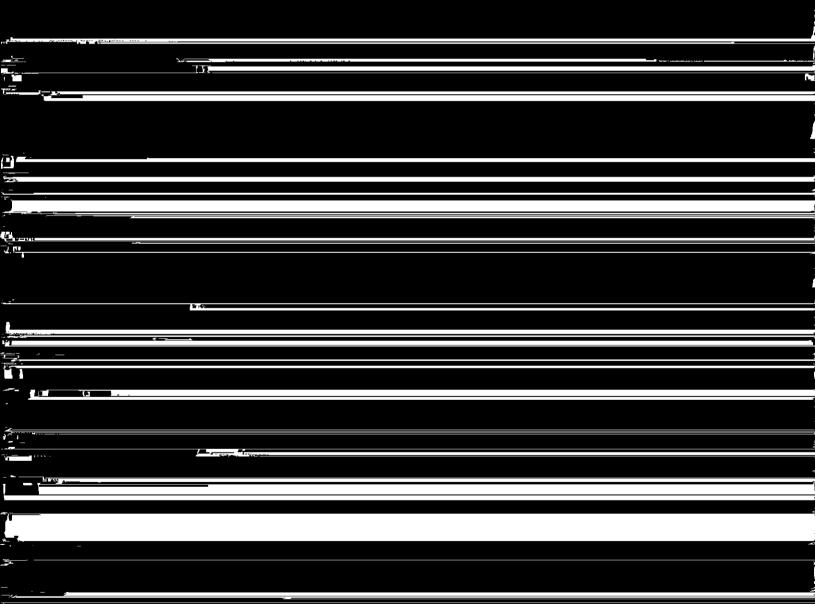
All values are ug/Kg dry weight basis.

VC10.W 012791A-05 PBLK69 0.234	VC10.W MS2 012791A-05 MS2 PBLK69 0.234	VC10.W MSD2 012791A-05 MSD2 PBLK69 0.234	Quant. Limits with no Dilution
ช บ บ	0.12J U U 14.X	บ บ 16 x	1.7 1.7 1.7
U U U	16.X U U 32.X	16.X U U 33.X	1.7 1.7 1.7 3.3
Ŭ U U	1.7 30.X U 13.	1.3 33.X U 10.	3.3 3.3 3.3 3.3
ប ប ប	6.8x 3.0 0	6.2X U 2.2 U	3.3
11/09/01	11/09/01	11/09/01	1.7 110
	012791A-05 PBLK69 0.234 U U U U U U U U U U U U U U U U U U	VC10.W MS2 012791A-05 PBLK69 PBLK69 0.234 0.234 U 0.12J U U U U U U U U U U U U U U U U U U U	VC10.W MS2 012791A-05 MS2 PBLK69 PBLK69 0.234 MSD2 MSD2 PBLK69 PBLK69 0.234 V 0.12J V V 0.12J V V U U

TABLE GC-1.7 7001-2791A TRC ENVIRONMENTAL 8081A PESTICIDES

All values are ug/Kg dry weight basis.

Client Sample I.D.	VC10.V	VC10.UB	VC10.T	
Lab Sample I.D. Method Blank I.D. Quant. Factor	012791A-06 PBLK69 0.229	012791A-07 PBLK69 0.459	012791A-08 PBLK69 0.428	Quant. Limits with no Dilution
alpha-BHC beta-BHC delta-BHC	ប ម ប	0.30J U	0.51J U	1.7 1.7
gamma-BHC (Lindane) Heptachlor Aldrin	ס	Ŭ 0	. ซ	1.7 1.7
Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE	U U U	ប ប ប	U U U	1.7 1.7 3.3
Endrin Endosulfan II 4,4'-DDD	์ บ บ	U U	์ บ บ	3.3
Endosulfan Sulfate 4,4'-DDT Methoxychlor Endrin ketone	ט ן	U 1	ប	3.3 1
Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene	. U i	1 U 1	U	1.7
Date Received Date Extracted Date Analyzed	11/09/01 11/19/01 12/07/01	11/09/01 11/19/01 12/07/01	11/09/01 11/19/01 12/07/01	110


See Appendix for qualifier definitions

Soil

TABLE GC-1.8 7001-2791A TRC ENVIRONMENTAL 8081A PESTICIDES

All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	VC15.A	VC10.N	VC10.S	Quant.
	012791A-09	012791A-12	012791A-13	Limits
	PBLK69	PBLK69	PBLK69	with no
	0.232	0.346	0.432	Dilution
alpha-BHC beta-BHC	0.094J	0.20J	0.37J	1.7 1.7

TABLE GC-1.9 7001-2791A TRC ENVIRONMENTAL 8081A PESTICIDES

All values are ug/Kg dry weight basis.

Client Sample I.D.	VC10.P	VC10.Q	VC10.RA	
Lab Sample I.D. Method Blank I.D. Quant. Factor	012791A-15 PBLK69 0.376	012791A-16 PBLK69 0.387	012791A-17 PBLK69 0.346	Quant. Limits with no Dilution
alpha-BHC beta-BHC delta-BHC	1 11	ι π.	iπ	1 17 1
gamma-BHC (Lindane) Heptachlor Aldrin	1. 11	U U U	.TT	1.7
DIEIGERI	v v	υ π		~ ~ 1.7
4,4'-DDE Endrin Endosulfan II 4,4'-DDD	Ü Ü	! 17 !	II	3 3
Endosulfan Sulfate 4,4'-DDT Methoxychlor	ו ט	U	. 17	3 3
Endrin ketone Endrin aldehyde alpha-Chlordane	ប 	ប : . ប :	ប៉ិ មេ ព	3.3 3.9 1.7
gaima-Chlordane Toxaphene	U U	U U	u v v	1.7 110
Date Received Date Extracted Date Analyzed	11/14/01 11/19/01 12/07/01	11/14/01 11/19/01 12/10/01	11/14/01 11/19/01 12/10/01	

TABLE GC-1.10 7001-2791A TRC ENVIRONMENTAL 8081A PESTICIDES

All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	VC10.OA 012791A-18 PBLK69 0.358	VC10.OA D1 012791A-18D1 PBLK69 0.359	VC10.OA D2 012791A-18D2 PBLK69 0.361	Quant. Limits with no Dilution
alpha-BHC beta-BHC delta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan Sulfate 4,4'-DDT Methoxychlor Endrin ketone drin aldehyde 1pha-Chlordane gamma-Chlordane Toxaphene	U U U U U U U U 0.483 U U U	0 0 0 0 0 0 2 0 374 0 0	U U U U U U U U U U U U U U U U U	1.7 1.7 1.7 1.7 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3
Date Received Date Extracted Date Analyzed	11/14/01 11/19/01 12/10/01	11/14/01 11/19/01 12/10/01	11/14/01 11/19/01 12/10/01	

TABLE GC-1.11 7001-2791A TRC ENVIRONMENTAL 8081A PESTICIDES

All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	PBLK69 QC1 111901-B08 QC1 PBLK69 0.200		Quant. Limits with no Dilution
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan T	5.5X 5.3X 5.5X 5.7X 5.0X		1.7 1.7 1.7 1.7
Dieldrin 4,4'-DDR Endrin Endosulfan II 4,4'-DDD Endosulfan Sulfate 4,4'-DDT	6.5X 6.1X 6.3X 6.0X 6.4X 5.8X 6.9X	este produka Este de la predicti	3.3 3.3 3.3 3.3
Methoxychlor Endrin ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene	7.0X 4.1X 5.0%	(1847)	17: 3.3 3.9 1.7 1.7 110
Date Received Date Extracted Date Analyzed	11/19/01 12/07/01	ž.	

ORGANICS APPENDIX

- U Indicates that the compound was analyzed for but not detected.
- J-Indicates that the compound was analyzed for and determined to be present in the sample. The mass spectrum of the compound meets the identification criteria of the method. The concentration listed is an estimated value, which is less than the specified minimum detection limit but is greater than zero.
- B—This flag is used when the analyte is found in the blanks as well as the sample. It indicates possible sample contamination and warns the data user to use caution when applying the results of this analyte.
- N Indicates that the compound was analyzed for but not requested as an analyte. Value will not be listed on tabular result sheet.
- S Estimated due to surrogate outliers.
- X Matrix spike compound.
- (1) Cannot be separated
- (2) Decomposes to azobenzene. Measured and calibrated as azobenzene.
- A This flag indicates that a TIC is a suspected aldol condensation product.
- E-Indicates that it exceeds calibration curve range.
- D-This flag identifies all compounds identified in an analysis at a secondary dilution factor.
- C Confirmed by GC/MS.
- T Compound present in TCLP blank.
- P This flag is used for a pesticide/aroclor target analyte when there is a greater than 25 percent difference for detected concentrations between the two GC columns (see Form X).

December 28, 2001

STL Connecticut
128 Long Hill Cross Road
Shelton, CT 06484

Tel: 203 929 8140 Fax: 203 929 8142 www.stl-mc.com

Ms. Megan Brown TRC ENVIRONMENTAL 5 Waterside Crossing Windsor, CT 06095

Dear Ms. Brown:

Please find enclosed the analytical results of 24 sample(s) received at our laboratory on November 16-20, 2001. This report contains sections addressing the following information at a minimum:

sample summary

definition of data qualifiers and terminology

. analytical methodology .

analytical results

. state certifications

chain-of-custody

STL Report #7001-2791B	Purchase Order #38077
Project ID: ISLANDER EAST	

Copies of this analytical report and supporting data are maintained in our files for a minimum of five years unless special arrangements have been made. Unless specifically indicated, all analytical testing was performed at this laboratory location and no portion of the testing was subcontracted.

We appreciate your selection of our services and welcome any questions or suggestions you may have relative to this report. Please contact your customer service representative at (203) 929-8140 for any additional information. Thank you for utilizing our services: we hope you will consider us for your future analytical needs.

I have reviewed and approved the enclosed data for final release.

/ery truly/youns.

Jeffrey C. Curran Laboratory Manager

JCC

This report contains 22 pages.

7001-2791B TRC ENVIRONMENTAL

Case Narrative

Sample Receipt -The samples were received at 8°C. The client was notified, and the laboratory was instructed to proceed with the analyses.

Polychlorinated Biphenyls (PCB's) - PCB samples were extracted and analyzed by GC/ECD using guidance provided in Methods 3510C/3550B/8082. The instrumentation used was a Hewlett-Packard Gas Chromatograph equipped with an Electron Capture Detector (Ni63).

All soil samples were acid and sulfur cleaned up prior to analysis.

All soil samples really could have used more sulfur cleanup, but due to limited extract volume this was not possible.

Samples were brought to a 2ml final volume in order to meet client required detection limits.

The amount spiked was not adjusted for the lower final volume for the QC checks and MS/MSD's.

The surrogate, tetrachlorometaxylene, was outside of retention time windows on the RTX-35 column in samples PBLK83, VC10.L, VC10.K, VC15.B, VC10.J, VC10.D, VC10.F, VC10.H, VC10.H, VC10.G, VC10.DMSB1, and VC10.DMS1. This shift was taken into consideration when samples were reviewed for target compounds.

The surrogate, tetrachlorometaxylene, was outside of retention time windows on the RTX-35 column in the AR16603 and PIBLK continuing calibration checks analyzed on 12/7/01 at 12:42, 13:22, 23:25; and 12/8/01 at 00:46. These were bracketing standards for PBLK83, VC10.L, VC10.K, VC15.B, VC10.J, VC10.D, VC10.F, VC10.H, VC10.H, VC10.G, and VC10.DMS1.

This shift was taken into consideration when samples were reviewed for target compounds.

The %RPD of Aroclor 1260 for samples VC10.DMS/MSD was over QC criteria.

The Aroclor 1260 spike present in sample VC10.DMSB was outside of retention time windows on the RTX-35 column. This shift was taken into consideration when the sample was reviewed for target compounds.

Manual integrations were performed if required, and any affected peaks were designated with an "MM" on the area report in the column titled "Code". Manual integrations were initialed by the analyst that performed the integration.

Sample Calculation:

Sample ID -VC10.DMSB1

Compound - Aroclor 1260 peak at retention time 22.23 on the RTX-35 column.

(500433area)(2000ul)

=95ug/kg

(351115area/ng)(30g)(1ul)

Pesticides - Pesticide samples were extracted and analyzed by GC/ECD using guidance provided in Methods 3510C/3550B/8081A. The instrumentation used was a Hewlett-Packard Gas Chromatograph equipped with an Electron Capture Detector (Ni63).

All soil samples were sulfur cleaned up prior to analysis.

Soil samples were brought to a 2ml final volume in order to meet client required detection limits.

The amount spiked was not adjusted for the lower final volume for the soil samples.

An LCS was not extracted with sample EB111701.

Surrogate percent recovery for Tetrachloro-m-xylene was below QC limits in PBLK07, PBLK07QC1, and VC10.DMSB2.

Spike recoveries for beta-BHC, gamma-BHC, Heptachlor, and Heptachlor Epoxide were below QC limits in PBLK07QC1. These compounds were not present in any of the associated samples above the reporting limit. A new LCS solution has been re-prepped.

Spike recoveries for 4,4'-DDD and Endosulfan II were elevated in PBLK75QC1 due to coelution of these compounds on both columns. Carrier gas flows have been adjusted on one of the columns to improve separation.

Results for Aldrin were reported from the DB-1701 column in VC10.B due to sample matrix interference on the RTX-35 column.

Results for 4,4'-DDD and Endosulfan II were reported from the RTX-35 column in PBLK07QC1 due to coelution on the DB-1701 column.

Results for Endosulfan I and alpha-Chlordane were reported from the DB-1701 column in PBLK07QC1 due to coelution on the RTX-35 column.

The % difference for Tetrachloro-m-xylene was below QC limits in the INDA3 standard analyzed at 11:30 on 12/8/01 on the DB-1701 column. This was the end standard for samples EB111501, PBLK79, and PBLK79QC1.

The % breakdown for 4,4'-DDT was outside of QC limits in the IBS analyzed at 10:41 on 12/15/01 on the DB-1701 column. The % difference for Endrin Ketone was below QC limits in the INDB3 standard analyzed at 11:35 on 12/15/01 on the DB-1701 column.

The % breakdown for 4,4'-DDT was outside of QC limits in the IBS analyzed at 00:03 on 12/17/01 on the DB-1701 column. The % differences for Heptachlor, 4,4'-DDD, 4,4'-DDT, and Methoxychlor were below QC limits in the INDA3 standard analyzed at 00:44 on 12/17/01 on the DB-1701 column. These were the end standards for samples VC10.E, VC10.D, VC10.F, VC10.H, VC10.G, VC10.DMS2, and VC10.DMSD2. Sample matrix was the cause.

The % breakdown for 4,4'-DDT was complete in the IBS analyzed at 08:52 on 12/19/01 on the RTX-35 column. The % differences for beta-BHC, Endosulfan Sulfate, Endrin Ketone, Endrin aldehyde, alpha-Chlordane, gamma-Chlordane, and Decachlorobiphenyl were below QC limits in the INDB3 standard analyzed at 09:29 on 12/19/01 on the RTX-35 column. These were the end standards for samples PBLK07, PBLK07QC1, VC10.MB, VC10.L, VC10.K, VC15.B, VC10.J, VC10.E, VC10.D, VC10.F, VC10.H, VC10.G, VC10.DMSB2, VC10.DMS2, and VC10.DMSD2. Sample matrix was the cause.

Manual integrations were performed if required, and any affected peaks were designated with an "MM" on the area report in the column titled "Code". Manual integrations were initialed by the analyst that performed the integration.

Sample Calculation:

Sample ID –VC10.K Compound – Aldrin

 $\frac{(82918\text{area})(2000\text{ul})}{(9476106\text{area/ng})(30.9\text{g})(0.61)(1\text{ul})} = 0.93 \text{ ug/Kg}$

Aqueous

TABLE GC-1.0 7001-2791B TRC ENVIRONMENTAL 8081A PESTICIDES

All values are ug/L.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	Method Blank 112601-B08 PBLK85 1.00	EB111701 012791B-08 PBLK85 1.05	Quant. Limits with no Dilution
alpha-BHC beta-BHC delta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan Sulfate 4,4'-DDT Methoxychlor drin Ketone drin Aldehyde alpha-Chlordane gamma-Chlordane Toxaphene	U U U U U U U U U U U U	U U U U U U U U U U U U	0.050 0.050 0.050 0.050 0.050
Date Received Date Extracted Date Analyzed	11/26/01 12/21/01	11/20/01 11/26/01 12/21/01	

Aqueous

TABLE GC-1.1 7001-2791B TRC ENVIRONMENTAL 8081A PESTICIDES

All values are ug/L.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	Method Blank 112001-B08 PBLK75 1.00	EB111501 012791B-01 PBLK75 1.00	PBLK75 QC1 112001-B08 QC1 PBLK75 1.00	Quant. Limits with no Dilution
alpha-Chlordane gamma-Chlordane	U U U U U U U U U U U U	U U U U U U U U U U U U U U U U U	0.18X 0.24X 0.13X 0.21X 0.22X 0.21X 0.22X 0.23X 0.23X 0.23X 0.41X 0.48X 0.20X 0.24X 0.29JX 0.25X 0.23X 0.25X	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.10 0.1
Toxaphene Date Received Date Extracted Date Analyzed	11/20/01 12/08/01	11/16/01 11/20/01 12/08/01	11/20/01 12/08/01	2.5

TABLE GC-1.2 7001-2791B TRC ENVIRONMENTAL 8081A PESTICIDES

All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Ouant. Factor	Method Blank 112801-B04 PBLK07 0.200	VC10.MB 012791B-02 PBLK07 0.658	VC10.L 012791B-03 PBLK07 0.338	Quant. Limits with no Dilution
alpha-BHC beta-BHC delta-BHC delta-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan Sulfate 4,4'-DDT Methoxychlor Fndrin ketone drin aldehyde		U U U U U U U U U U U	0.56JB U U U U U U U U U U U U U U U U U U U	1.7 1.7 1.7 1.7 1.7 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3
Date Received Date Extracted Date Analyzed	11/28/01 12/15/01	11/16/01 11/28/01 12/15/01	11/16/01 11/28/01 12/15/01	

Soil

TABLE GC-1.3 7001-2791B TRC ENVIRONMENTAL 8081A PESTICIDES

All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	VC10.K 012791B-04 PBLK07 0.318	VC15.B 012791B-05 PBLK07 0.326	VC10.J 012791B-06 PBLK07 0.330	Quant. Limits with no Dilution
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4.4-DDE Endrin Endosulfan II 4,4-DDD Endosulfan Sulfate 4,4-DDT Methoxychlor Endrin ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene	U U U 0.93 U 0.30J U U U 0.17J U 0.29J U	U 0.44J U 0.18J U U U	0.67B U U U U U 0.16J U 0.21J U 0.23J U U U U	1.7 1.7 1.7 1.7 1.7 1.7 1.7 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3
Date Received Date Extracted Date Analyzed	11/16/01 11/28/01 12/15/01	11/16/01 11/28/01 12/15/01	11/16/01 11/28/01 12/15/01	

TABLE GC-1.4 7001-2791B TRC ENVIRONMENTAL 8081A PESTICIDES

All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	VC10.E 012791B-09 PBLK07 0.386	VC10.D 012791B-10 PBLK07 0.370	VC10.D MS2 012791B-10 MS2 PBLK07 0.366	Quant. Limits with no Dilution
alpha-BHC beta-BHC delta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan Sulfate 4,4'-DDT Methoxychlor Endrin ketone drin aldehyde -pha-Chlordane	0.24J 0.24J U U U U U U U U U U U U U U U U U U U	U U U U U U U U U U U U U U	0.54JB U U 20.X 18.X 24.X U 46.X 4.1 48.X U 19. U U U U U U U U	1.7 1.7 1.7 1.7 1.7 1.7 3.3 3.3 3.3 3.3 3.3 3.7 1.7
Toxaphene Date Received Date Extracted Date Analyzed	11/20/01 11/28/01 12/16/01	11/20/01 11/28/01 12/16/01	11/20/01 11/28/01 12/16/01	110

TABLE GC-1.5 7001-2791B TRC ENVIRONMENTAL 8081A PESTICIDES

All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	VC10.D MSB2 012791B-10 MSB2 PBLK07 0.200	VC10.D MSD2 012791B-10 MSD2 PBLK07 0.366	VC10.F 012791B-11 PBLK07 0.364	Quant. Limits with no Dilution
alpha-BHC beta-BHC delta-BHC	u u	ן ט	ប ប ប	1.7 1.7 1.7
gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide	7.0X 8.1X	18.X 24.X	บ บ 0.95 บ	1.7 1.7 1.7
Endosulfan I Dieldrin 4,41-DDE	23.X 1.8	2.7	ិ	1.7 3.3 3.3 3.3 3.3
Endrin Endosulfan II 4,4'-DDD Endosulfan Sulfate 4,4'-DDT	0.19J		U U 0.60J U	3.3 3.3 3.3
Methoxychlor Endrin ketone Endrin aldehyde alpha-Chlordane	1.0J 0.18J	י ט	ប ប ប	17. 3.3
gamma-Chlordane Toxaphene			Ü	1.7 110
Date Received Date Extracted Date Analyzed	11/20/01 11/28/01 12/15/01	11/20/01 11/28/01 12/16/01	11/20/01 11/28/01 12/16/01	·

TABLE GC-1.6 7001-2791B TRC ENVIRONMENTAL 8081A PESTICIDES

All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	VC10.H 012791B-12 PBLK07 0.347	VC10.G 012791B-13 PBLK07 0.362	PBLK07 QC1 112801-B04 QC1 PBLK07 0.200	Quant. Limits with no Dilution
alpha-Chlordane gamma-Chlordane Toxaphene	0 0 0 0 0 0 0 0 183 0 0 0 0		3.3BX 4.4X 1.8X 3.9X 3.7X 4.6X 4.6X 5.3X 5.8X 5.9X 5.9X 5.9X 5.7X 6.7X 6.7X 4.6X 4.6X 4.7X U	1.7 1.7 1.7 1.7 1.7 1.7 3.3 3.3 3.3 3.3 3.3 3.3 3.3 17. 3.3
Date Received Date Extracted Date Analyzed	11/20/01 11/28/01 12/16/01	11/20/01 11/28/01 12/16/01	11/28/01 12/15/01	

Aqueous

TABLE GC-1.0 7001-2791B TRC ENVIRONMENTAL 8081A PESTICIDES

All values are ug/L.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	Method Blank 112601-B08 PBLK85 1.00	EB111701 012791B-08 PBLK85 1.05	Quant. Limits with no Dilution
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4.4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan Sulfate 4,4'-DDT Methoxychlor Endrin Ketone Endrin Aldehyde alpha-Chlordane gamma-Chlordane Toxaphene	900000000000000000000000000000000000000	999999999999999999999999999999999999999	0.050 0.050 0.050 0.050 0.10 0.10 0.10 0
Date Received Date Extracted Date Analyzed	11/26/01 12/21/01	11/20/01 11/26/01 12/21/01	

Aqueous

TABLE GC-1.1 7001-2791B TRC ENVIRONMENTAL 8081A PESTICIDES

All values are ug/L.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor alpha-BHC	Method Blank 112001-B08 PBLK75 1.00	EB111501 012791B-0 PBLK75 1.00	112001 700	Quant. Limits with no
beta BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Indosulfan I Dieldrin A'-DDE Indrin Indosulfan II A'-DDD Indosulfan Sulfate A'-DDT ethoxychlor 'rin Ketone Lin Aldehyde	0 0 0 0 0	U U U U U U U U U U U U U U U U U U U	0.18X 0.24X 0.13X 0.21X 0.22X 0.22X 0.21X 0.23X 0.23X 0.23X 0.23X 0.41X 0.48X	Dilution 0.050 0.050 0.050 0.050 0.050 0.050 0.10 0.1
te Received te Extracted te Analyzed	11/20/01 12/08/01	11/16/01 11/20/01 12/08/01	11/20/01 12/08/01	0.050 2.5

lee Appendix for qualifier definitions

Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and

TABLE GC-1.2 7001-2791B TRC ENVIRONMENTAL 8081A PESTICIDES

All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	Method Blank 112801-B04 PBLK07 0.200	VC10.MB 012791B-02 PBLK07 0.658	VC10.L 012791B-03 PBLK07 0.338	Quant. Limits with no Dilution
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane)	V MUSA.	1 ' U	0.56JB U U	1.7 1.7 1.7 1.7
Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin	U U U	о О О		1.7 1.7
4,4 DDE Endrin Endosulfan II 4,4'-DDD Endosulfan Sulfate	U A A A A A A A A A A A A A A A A A A A	U January U	ប ប	3.3 3.3 3.3 3.3
4,4'-DDT Methoxychlor Endrin ketone Endrin aldehyde alpha-Chlordane	0 0 0	0 0 0	0 U U	3.3 17. 3.3 3.9 1.7
gamma-Chlordane Toxaphene Date Received Date Extracted Date Analyzed	11/28/01 12/15/01	11/16/01 11/28/01 12/15/01	11/16/01 11/28/01 12/15/01	1.7 110

TABLE GC-1.3 7001-2791B TRC ENVIRONMENTAL 8081A PESTICIDES

All values are ug/Kg dry weight basis.

•				
Client Sample I.D. Lab Sample I.D. Method Blank I.D.	VC10.K 012791B-04 PBLK07	VC15.B 012791B-05 PBLK07	VC10.J 012791B-06 PBLK07	Quant. Limits with no
Quant. Factor	0.318	0.326	0.330	Dilution
alpha-BHC beta-BHC delta-BHC	U	ី ប្រ ប	0.67B U	1.7
gamma-BHC (Lindane) Heptachlor Aldrin	ບ >>:0293	U 0.44J	U U 11	1.7 1.7
Heptachlor Epoxide Endosulfan I Dieldrin 4,4*-DDE	U 0.30J U	0.18J U	U U U	3.3 3.3 3.3
Endrin Endosulfan II. 4,4'-DDD Endosulfan Sulfate		i sy	មន្ត្រី ប ្រ	3.3 3.3 3.3
4,4'-DDT Methoxychlor drin ketone	0.29J	() () () () () () () () () () () () () (0.23J	
drin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene			0.65 U U	
Date Received Date Extracted Date Analyzed	11/16/01 11/28/01 12/15/01	11/16/01 11/28/01 12/15/01	11/16/01 11/28/01 12/15/01	

TABLE GC-1.4 7001-2791B TRC ENVIRONMENTAL **8081A PESTICIDES**

All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	VC10.E 012791B-09 PBLK07 0.386	VC10.D 012791B-10 PBLK07 0.370	VC10.D MS2 012791B-10 MS2 PBLK07 0.366	Quant. Limits with no Dilution
alpha-BHC beta-BHC delta-BHC	0.39JB U	ប	0.54JB Ü	1.7
gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide	0.24J	Ū	1 1 X Y	1.7 1.7 1.7
Alorin Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin	0.63J U	U U Q,53J	46.X 46.1 48.X	3.3
Endosulfan II 4,4'-DDD Endosulfan Sulfate	0 0	U U	U 19. U	3.3 3.3 3.3
4,4'-DDT Methoxychlor Endrin ketone Endrin aldehyde		A	21.X U U	3.3
alpha-Chlordane gamma-Chlordane Toxaphene	· · ·	ı U i	$\mathbf{\sigma}$	1.7
Date Received Date Extracted Date Analyzed	11/20/01 11/28/01 12/16/01	11/20/01 11/28/01 12/16/01	11/20/01 11/28/01 12/16/01	

TABLE GC-1.5 7001-2791B TRC ENVIRONMENTAL 8081A PESTICIDES

All values are ug/Kg dry weight basis.

Lab Sample I.D. Method Blank I.D. Quant. Factor	MSB2 012791B-10 MSB2 PBLK07 0.200	MSD2 012791B-10 MSD2 PBLK07 0.366	VC10.F 012791B-11 PBLK07 0.364	Quant. Limits with no Dilution
alpha-BHC beta-BHC lelta-BHC gamma-BHC (Lindane) Heptachlor	7.0X	U 21 X 18.X	บ ย บ บ	1.7
Midrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin	8.1X U U 23.X 1.8 24.X	U 49.X 2.7 49.X	0.95 U U U	1.7 3.3 3.3
Endosulfan II 4,4'-DDD Endosulfan Sulfate 4,4'-DDT Wethoxychlor Adrin ketone	0.19J 23.X 1.0J 0.18J	18. 15.x U	0 600 0 0 0 0 0 0 0	3.3 17. 3.3
drin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Date Received Date Extracted	11/20/01 11/28/01	l o	11/20/01 11/28/01	3.9 1.7 1.7 110

TABLE GC-1.6 7001-2791B TRC ENVIRONMENTAL 8081A PESTICIDES

All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	VC10.H 012791B-12 PBLK07 0.347	VC10.G 012791B-13 PBLK07 0.362	PBLK07 QC1 112801-B04 QC1 PBLK07 0.200	Quant. Limits with no Dilution
alpha-BHC beta-BHC delta-BHC		Ü Ü	3.3BX 4.4X 1.8X	1.7 1.7 1.7
gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin	U	U U	3.9X 3.7X 4.0X 4.6X	1.7 1.7 1.7
4,4 DDE	r i i u	y a series	4.4% 5.3% 5.3% 5.8%	3.3 3.3 3.3
Endosulfan II 4,4'-DDD Endosulfan Sulfate 4,4'-DDT	0.183	U U U	5.9x 5.0x 4.7x 5.7x	3.3
Methoxychlor Endrin ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane		ប ប ប	6.7X 5.5X 4.3X 4.6X 4.7X	17. 3.3 3.9 1.7
Toxaphene Date Received Date Extracted Date Analyzed	11/20/01 11/28/01 12/16/01	11/20/01 11/28/01 12/16/01	11/28/01 12/15/01	110

See Appendix for qualifier definitions

Note: Compound detection limit = quantitation limit x quantitation factor

Quant. Factor = a numerical value which takes into account any

variation in sample weight/volume, % moisture and

sample dilution.

STL Connecticut

ORGANICS APPENDIX

- U Indicates that the compound was analyzed for but not detected.
- J-Indicates that the compound was analyzed for and determined to be present in the sample. The mass spectrum of the compound meets the identification criteria of the method. The concentration listed is an estimated value, which is less than the specified minimum detection limit but is greater than zero.
- B—This flag is used when the analyte is found in the blanks as well as the sample. It indicates possible sample contamination and warns the data user to use caution when applying the results of this analyte.
- N Indicates that the compound was analyzed for but not requested as an analyte. Value will not be listed on tabular result sheet.
- S Estimated due to surrogate outliers.
- X Matrix spike compound.
- (1) Cannot be separated
- (2) Decomposes to azobenzene. Measured and calibrated as azobenzene.
- A This flag indicates that a TIC is a suspected aldol condensation product.
- E Indicates that it exceeds calibration curve range.
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor.
- C-Confirmed by GC/MS.
- T Compound present in TCLP blank.
- P This flag is used for a pesticide/aroclor target analyte when there is a greater than 25 percent difference for detected concentrations between the two GC columns (see Form X).

STL Connecticut

SUBCONTRACTED VOLATILE DATA

Client:

Project ID:

P.O.

SDG#:

STL ID:

TRC ENVIRONMENTAL

ISLANDER EAST

38077

A2791

7001-2791A

CASE NARRATIVE A1K210141

The following report contains the analytical results for four water samples and thirteen solid samples submitted to STL North Canton by STL Connecticut, project number 7001-2791A. The samples were received November 21, 2001, according to documented sample acceptance procedures.

STL utilizes only USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameters listed on the analytical methods summary page in accordance with the methods indicated. A summary of QC data for these analyses is included at the rear of the report.

The results included in this report have been reviewed for compliance with the laboratory QA/QC plan. All data have been found to be compliant with laboratory protocol.

SUPPLEMENTAL QC INFORMATION

GC VOLATILES

Due to analyst error, no MS/MSD was performed; therefore, an LCS/LCSD was provided for batch 1330458.

An LCS/LCSD was provided for batch 1330464 since there was insufficient sample volume to perform an MS/MSD.

Sample V10.OA (REP 3) could not be analyzed. The sample vial leaked in transit from the STL Connecticut laboratory.